

OCR (B) Chemistry A-Level O2 - Equilibria (Acid–Base) Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

What is a Brønsted-Lowry acid and base?

What is a Brønsted-Lowry acid and base?

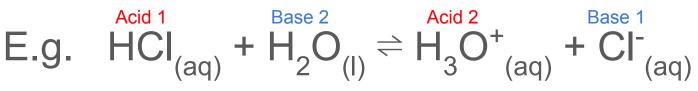
Brønsted-Lowry acid: proton donor.
Brønsted-Lowry base: proton acceptor.

What is the proton donor and acceptor in this reaction: $HNO_{2(s)} + H_2O_{(I)} \rightarrow H_3O^+_{(aq)} + NO_2^-_{(aq)}$

What is the proton donor and acceptor in this reaction: HNO_{2(s)}+ H₂O_(l) \rightarrow H₃O⁺_(aq) + NO_{2 (aq)}

Proton donor: HNO_{2(aq)}
 Proton acceptor: H₂O_(I)

What is a conjugate acid-base pair?



What is a conjugate acid-base pair?

• A conjugate acid-base pair contains two species that can be easily converted by transferring a proton.

- HCl and Cl⁻ are conjugate acid-base pairs.
- H_2O and H_3O^+ are conjugate acid-base pairs.

What is a strong acid?

What is a strong acid?

A strong acid is an acid that completely dissociates in solution:

$$HCI_{(aq)} \rightleftharpoons H^+_{(aq)} + CI^-_{(aq)}$$

What is a strong base?

What is a strong base?

A strong base is a base that completely dissociates in solution:

$$NaOH_{(aq)} \rightleftharpoons Na^+_{(aq)} + OH^-_{(aq)}$$

What is a weak acid?

What is a weak acid?

A weak acid is an acid that only partially dissociates in solution:

$CH_3COOH_{(aq)} \rightleftharpoons CH_3COO^-_{(aq)} + H^+_{(aq)}$

What is the acid dissociation constant?

What is the acid dissociation constant?

It measures, quantitatively, the strength of acid in solution.

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

What is pK_a?

What is pK_a?

$$pK_a = -logK_a$$

pK_a values are much more manageable than K_a values and make it easier to compare the strengths of solutions.

What is pH?

What is pH?

- It is an easier way of measuring hydrogen ion concentration.
- There's a large range of [H⁺] values with negative powers of 10. The negative logarithm of [H⁺] gives a more manageable scale of 1 to 14 rather than 10⁻¹ to 10⁻¹⁴.

How can you measure the pH of a solution?

How can you measure the pH of a solution?

• With a pH probe.

• Using pH scales with a suitable indicator.

How do you calculate the pH of a strong acid?

How do you calculate the pH of a strong acid?

$\mathsf{HA} \rightleftharpoons \mathsf{H}^+ + \mathsf{A}^-$

Strong acid: therefore the concentration of acid = concentration of H^+ ions.

$pH = -log[H^+]$

How do you calculate the pH of a strong base?

How do you calculate the pH of a strong base? $XOH \Rightarrow X^+ + OH^-$

Strong base: therefore concentration of base = concentration of OH⁻ ions.
K_w = [H⁺][OH⁻] so [H⁺] = K_w/[OH⁻]
pH = -log[H⁺]

R www.pmt.education

D PMTEducation

How do you calculate the pH of a weak acid?

How do you calculate the pH of a weak acid? $HA \rightleftharpoons H^+ + A^-$ Write K_a expression: $K_a = \frac{[H^+][A^-]}{[HA]}$ We can assume $[H^+] = [A^-]$ so: $K_a = \frac{[H^+]^2}{[H^A]}$ Rearrange to make [H⁺] the subject: $[H^+] = \sqrt{K_a \times [HA]}$ $pH = -log[H^+]$

D G G S PMTEducation

www.pmt.education

What is a buffer?

What is a buffer?

A system that minimises pH changes on addition of small amounts of an acid or base.

How do buffers work?

How do buffers work?

E.g. $CH_3COOH_{(aq)} \rightleftharpoons CH_3COO^-_{(aq)} + H^+_{(aq)}$

- Upon addition of acid: More H⁺ ions are present in the solution and so combine with CH₃COO⁻_(aq) to form CH₃COOH. The reverse reaction is favoured and the position of equilibrium shifts to the left.
- Upon addition of base: More OH⁻ ions are present in the solution and so combine with H⁺ to form H₂O. The forward reaction is favoured and the position of equilibrium shifts to the right.

What is a weak acid buffer?

What is a weak acid buffer?

A mixture of a weak acid and its conjugate base (usually in the form of one of its salts i.e. $CH_3COO^-Na^+$).

How do you calculate the pH of a weak acid buffer solution?

How do you calculate the pH of a weak acid buffer solution?

- E.g. $CH_3COOH_{(aq)} \rightleftharpoons CH_3COO^-_{(aq)} + H^+_{(aq)}$
- Write K_a expression: $K_a = \frac{[H^+][CH_3COO^-]}{[CH_3COOH]}$
- Make [H⁺] the subject: $[H^+] = \frac{K_a \times [CH_3COOH]}{[CH_3COO^-]}$
- Calculate [H⁺] and then substitute into pH = -log[H⁺]

D G G S PMTEducation

What assumptions are made in this weak acid buffer calculation?

What assumptions are made in this weak acid buffer calculation?

 [Acid] = [HA] as only slightly dissociated

How do you calculate the pH of a buffer solution made by partial neutralisation?

How do you calculate the pH of a buffer solution made by partial neutralisation?

E.g.
$$HCOOH_{(aq)} + NaOH_{(aq)} \rightarrow HCOO^{-}Na^{+}_{(aq)} + H_2O_{(l)}$$

- Here, the acid is in excess so not all acid is converted into the salt, leaving some leftover. All NaOH reacts however.
- Calculate the number of moles of each compound reacted and at equilibrium and hence their concentrations.
- Substitute into the K_a expression and rearrange for $[H^+]$.
- pH = -log[H⁺]

